Распродажа!

[Майкл Абель, Гвендолин Стриплинг] Машинное обучение с малым объемом кодирования (2025)

Первоначальная цена составляла руб.3,900.0.Текущая цена: руб.350.0.

-91%

Слив курса Машинное обучение с малым объемом кодирования: практическое введение в искусственный интеллект на основе проектов [Майкл Абель, Гвендолин Стриплинг] В книге подробно представлены три проблемно-ориентированных вида машинного обучения (Machine learning, ML): автоматизированное обучение AutoML без кодирования, обучение BigQuery ML с малым объемом кодирования и обучение с применением пользовательского кода на основе библиотек scikit-learn и Keras. При этом от читателя не требуется глубоких предварительных знаний в ML или программировании, но базовые навыки в этих областях будут полезны. Специализированные библиотеки, фреймворки ML, репозиторий GitHub и другие инструменты описаны по мере их необходимости. В каждом конкретном случае ключевые концепции ML раскрыты с использованием реальных наборов данных для решения реальных задач. Рассмотрено применение AutoML для прогнозирования продаж, использование BigQuery ML для обучения линейных регрессионных моделей, обучение пользовательских ML-моделей на Python для прогнозирования оттока клиентов и ряд других популярных бизнес-кейсов.

Хотите больше курсов? Предлагаем: Безлимит на 365 дней!
Если вы сомневаетесь в нашей честности, то напишите нам по контактам на сайте. по ссылке: https://unimys.com/obratnaya-svyaz/
Любой товар стоит от 150 до 500 рублей (цена не зависит от стоимость продажи у автора)
  • После оплаты вы сразу же получаете курсы на e-mail;
  • Низкая цена;
  • Легко оплатить (мы используем все популярные платежные системы).

Если вы оплатили продукт, и он не пришел вам на почту в течение 30 минут, то свяжитесь с нами по ссылке: https://unimys.com/zakaz-ne-prishel/

Слив курса Машинное обучение с малым объемом кодирования: практическое введение в искусственный интеллект на основе проектов [Майкл Абель, Гвендолин Стриплинг]
В книге подробно представлены три проблемно-ориентированных вида машинного обучения (Machine learning, ML): автоматизированное обучение AutoML без кодирования, обучение BigQuery ML с малым объемом кодирования и обучение с применением пользовательского кода на основе библиотек scikit-learn и Keras. При этом от читателя не требуется глубоких предварительных знаний в ML или программировании, но базовые навыки в этих областях будут полезны. Специализированные библиотеки, фреймворки ML, репозиторий GitHub и другие инструменты описаны по мере их необходимости. В каждом конкретном случае ключевые концепции ML раскрыты с использованием реальных наборов данных для решения реальных задач. Рассмотрено применение AutoML для прогнозирования продаж, использование BigQuery ML для обучения линейных регрессионных моделей, обучение пользовательских ML-моделей на Python для прогнозирования оттока клиентов и ряд других популярных бизнес-кейсов.

Вы узнаете:

  • Как различать структурированные и неструктурированные данные и разбираться с проблемами, которые могут встретиться
  • Как визуализировать и анализировать данные
  • Как предварительно обрабатывать данные для ввода в модель машинного обучения
  • Чем отличаются регрессионная и классификационная модели обучения с учителем
  • Как сравнивать различные типы моделей ML и их архитектуры, начиная с моделей без кода и с малым объемом кода и заканчивая моделями пользовательского обучения
  • Как проектировать, внедрять и настраивать модели ML
  • Как экспортировать данные в репозиторий GitHub для хранения и управления ими

Формат: PDF.