Распродажа!

[Михаил Миронов, Екатерина Минеева] [stepik academy] Математика для Data Science (2021)

р.500

-75%

Разберитесь, как работают технологии машинного обучения, и научитесь пользоваться ими осознанно. Тариф «Перельман»

Категория:
Если вы сомневаетесь в нашей честности, то напишите нам по контактам на сайте. по ссылке: https://unimys.com/obratnaya-svyaz/
Любой товар стоит от 150 до 500 рублей (цена не зависит от стоимость продажи у автора)
  • После оплаты вы сразу же получаете курсы на e-mail;
  • Низкая цена;
  • Легко оплатить (мы используем все популярные платежные системы).

Если вы оплатили продукт, и он не пришел вам на почту в течение 30 минут, то свяжитесь с нами по ссылке: https://unimys.com/zakaz-ne-prishel/

Описание

Разберитесь, как работают технологии машинного обучения, и научитесь пользоваться ими осознанно.

Тариф «Перельман»

Математика для DS – программа из 3-х курсов, которая поможет:
1. Разобраться в теории

Вы любите доходить до самой сути всего, что делаете. Вам интересно, что стоит за теми алгоритмами, которые вы применяете.
2. Подготовиться к собеседованию
Вы хотите работать в сфере Data Science и боитесь каверзных вопросов на собеседованиях? Не зря боитесь.
3. Читать научные статьи
Статьи по Data Science часто несложные по сути – но без определенной математической базы их сложно читать.
4. Полюбить математику
Мы любим математику и хотим показать вам, как она красива.

Содержание:

Блок 1 – Математический анализ

Модуль 1 – Одномерный математический анализ

  • Зачем в машинном обучении нужен математический анализ
  • Множества и функции
  • Пределы последовательностей
  • Пределы функций и непрерывные функции
  • Производные
  • Одномерный градиентный спуск

Модуль 2 – Многомерный математический анализ

  • R^n: расстояния и векторы
  • Дифференциал и частные производные
  • Производная по направлению и градиент
  • Градиентный спуск
  • Модификации градиентного спуска (Momentum, RMSProp, Adam)

Блок 2 – Линейная алгебра

Модуль 1 – Линейная алгебра

  • Векторные пространства и линейные отображения
  • Матрицы
  • Нейронные сети
  • Подпространства, базис, размерность
  • Ранг матрицы и метод Гаусса

Модуль 2 – Линейная алгебра продолжение

  • Определитель, обратные матрицы, замена базиса
  • Скалярное произведение, углы, расстояния
  • Ортогональные матрицы
  • Матричные разложения
  • Собственные векторы и SVD
  • Backpropagation

Блок 3 – Теория вероятностей

Модуль 1 – Дискретная теория вероятностей

  • Вероятностное пространство, события, исходы
  • Равновероятные исходы
  • Условная вероятность, независимые события, теорема Байеса
  • Перестановки и биномиальные коэффициенты
  • Дискретная случайная величина, распределение, математическое ожидание, дисперсия
  • Ряды и счётное пространство исходов

Модуль 2 – Непрерывная теория вероятностей

  • Интеграл и непрерывное пространство исходов.
  • Непрерывная случайная величина, распределение, плотность распределения, математическое ожидание, дисперсия
  • Закон больших чисел
  • Центральная предельная теорема
  • Основы статистики: статистические тесты

 

Отзывы

Отзывов пока нет.

Будьте первым, кто оставил отзыв на “[Михаил Миронов, Екатерина Минеева] [stepik academy] Математика для Data Science (2021)”

Ваш адрес email не будет опубликован. Обязательные поля помечены *